Using Varietal Differences in Post Harvest Insect Resistance of Northern Great Plains Hard Spring and Winter Wheat Varieties to Increase Profit Potential

Florence V. Dunkel and Matthew J. Broughton, Department of Entomology, Montana State University
Lloyd Bullerman, Department of Food Science and Technology, University of Nebraska
NC-213 Project Objective

- Evaluate resistance of Northern Great Plains-grown hard red spring, hard red winter, hard white, and soft white wheat varieties to Montana strains of storage insects.
Specific Objectives

- Determine role of genetic traits, climatic factors, and agronomic practices on ability of hard wheat varieties to resist *R. dominica* attack
- Explore interaction of other destructive postharvest insect species
- Determine α-amylase inhibitor levels and/or other biochemical resistance factors
- Determine effect of *P. interpunctella* and *R. dominica*, separately, on fungal invasion of kernels
Major Players

- Indian Mealmoth, *Plodia interpunctella*
- Lesser Grain Borer, *Rhyzopertha dominica*
- Hard Spring/Hard Winter Wheat varieties
- on farm storage/elevator storage
Bran Layer

Endosperm

Pericarp

Germ / Embryo
Lesser Grain Borer
Rhyzopertha dominica

- recent immigrant from tropics
- attacks all grains, including Hard Wheat
- populations resistant to organophosphates, pyrethroids
Indian Mealmoth

Plodia interpunctella

- Pest in pet foods and processed cereals
- Major pest of dry fruits, nuts
- #1 postharvest peanut pest
- Degerms wheat
Damage Caused by 82 Day *Plodia interpunctella* feeding on whole sound wheat kernel

Ernest, Bozeman, MT Crop Year 2001

Penawawa, Big Sandy, MT Crop Year 2001
Hypothesis

- Seed coat chemicals confer different levels of insect resistance in hard red wheat
Assumptions re: Hard Wheat

- Kernel hardness is responsible for postharvest insect resistance
- All stored hard wheat varieties behave identically to insect pressure
- *Plodia interpunctella* is not an economic pest of stored wheat
Grain Samples Acquired as of 31 Dec 2002

- 120 total samples
- Crop Year 1999 - 1 sample
- Crop Year 2001 - 45 samples
- Crop Year 2002 - 74 samples
- Montana - 88 samples
- Nebraska - 16 samples
- North Dakota - 16 samples
List of Sample Varieties

- **Hard Red Spring**
 - Amidon, Ernest, Hi-Line, McNeal, Newana, Reeder, Scholar

- **Hard Red Winter**
 - Alliance, Alsen, BigSky, Culver, Grandin, Millenium, Neeley, Oxen, Parshall, Rocky, Russ, Tiber, Vanguard, Wahoo

- **Hard White**
 - NuWest

- **Soft White**
 - Penawawa
Mean Percent Dry Weight Loss Due to *Plodia interpunctella* Damage After 22 Days

Crop year 1999 ANOVA -SNK, P=0.05
Kernel Damage Analysis of 22 Day Exposure to *Plodia interpunctella* Larvae

Crop year 1999 ANOVA -SNK, P=0.05
Plodia interpunctella Frass and Silk Production on Sound Wheat After 82 days

Crop year 2001 ANOVA - SNK, P=0.05
Plodia interpunctella Larvae
Production on Sound Wheat After 82 days

Crop year 2001 ANOVA - SNK, P=0.05
Plodia interpunctella Adult Production on Sound Wheat After 82 days

Crop year 2001 ANOVA -SNK, P=0.05

<table>
<thead>
<tr>
<th>Varietal Mean</th>
<th>Big Sandy</th>
<th>Moccasin</th>
<th>Huntley Irrigated</th>
<th>Huntley Dryland</th>
<th>Bozeman Irrigated</th>
<th>Penawawa 1999</th>
<th>Penawawa 2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newara</td>
<td>10</td>
<td>11.69</td>
<td>11.36</td>
<td>11.56</td>
<td>11.69</td>
<td>11.56</td>
<td>Penawawa 1999</td>
</tr>
<tr>
<td>Amidon</td>
<td>10</td>
<td>11.69</td>
<td>11.36</td>
<td>11.56</td>
<td>11.69</td>
<td>11.56</td>
<td>Penawawa 2001</td>
</tr>
<tr>
<td>McNeal</td>
<td>6.88</td>
<td>10</td>
<td>11.36</td>
<td>11.56</td>
<td>11.69</td>
<td>11.56</td>
<td>Penawawa 1999</td>
</tr>
<tr>
<td>Scholar</td>
<td>11.36</td>
<td>10</td>
<td>11.56</td>
<td>11.36</td>
<td>11.69</td>
<td>11.56</td>
<td>Penawawa 2001</td>
</tr>
</tbody>
</table>

Crop year 2001 ANOVA -SNK, P=0.05
R. dominica Mean Frass Production on Sound Kernels After 10 days

<table>
<thead>
<tr>
<th>Variety</th>
<th>HiLine</th>
<th>Newana</th>
<th>Amidon</th>
<th>McNeal</th>
<th>Scholar</th>
<th>Ernest</th>
<th>Reeder</th>
<th>Penawawa 1999</th>
<th>Penawawa 2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moccasin Dryland</td>
<td>4.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huntley Irrigated</td>
<td>3.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huntley Dryland</td>
<td>3.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bozeman Irrigated</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varietal Means</td>
<td>2.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BigSandy -Sensitive Cntrls</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Crop year 2001 ANOVA -SNK, P=0.05
R. dominica Mean Frass Production on **P. interpunctella** Degermed Kernel After 10 days

All varieties increased significantly compared to undamaged kernels except for HiLine and Scholar from Moccasin.

Crop year 2001 ANOVA - SNK, P=0.05
Mean Frass Production of *R. dominica* on Sound and Degermed Wheat

Crop Year 2001 ANOVA-SNK, pairwise, P=0.05

All varieties increased significantly
Fungal invasion 15% M.C.
Conclusions

- *P. interpunctella* greatly increases the susceptibility of wheat to damage by *R. dominica*

- There is some biochemical property in the seed coat of some varieties of wheat that cause them to resist damage by insects

- These differences can translate in changes in profit for grain producers and handlers
The Next Step

- Continue to test the feeding damage differences in the rest of the samples collected
- Test the grain for biochemical factors that might be causing these varying levels of insect resistance
- Use this data to develop new improved varieties of grain
Acknowledgements

- Anderson Foundation
- Luther Talbert and Phil Bruckner, Dept of Plant Sciences, MSU-Bozeman
- Mohamed Mergoum, NDSU-Fargo and his associates for the ND samples
- Stephen Baezinger, UN-Lincoln for the Nebraska samples
- Montana Ag Experiment Station
- Nebraska Ag Experiment Station