PLANT DISEASE EPIDEMIOLOGY -- Winter 2008
FINAL
Closed book and closed notes. You can use a calculator (if needed)

1. Define or explain 10 of the following 11 terms (leave one blank; your choice) [40 points].

 a. Multiple point crop loss model

 b. Point source of inoculum

 c. \(y_\infty = 1 - \exp(-R_0y_\infty) \)

 d. Secondary dispersal gradient
e. beta-binomial distribution

f. \(dy/ds \)

g. Latent period

h. coupled differential equations

i. sparse sampling
2. In spatial pattern analysis, two types of correlation are valuable indices of aggregation, the intra-cluster correlation (ρ; related to θ and D) and the 1st order spatial autocorrelation [$r(1)$]. Explain in words (equations are not needed) the meaning of these two measures of aggregation. Be thorough, and make sure the ideas of scale are incorporated in your answer. [12 points]
3. With regard to disease gradients, what is the difference between a_P of the power model (with $\lambda=0$) and a_E of the exponential model? Make sure you explain the biological or physical interpretation of these parameters. How would your answer change if you compared a_E with a_P of the modified power gradient model (i.e., with $\lambda>0$)? [12 points]

4. There is a well-known functional relationship between R_0 and r_E (early in polycyclic epidemics). Complete the following text, by circling the correct words in each sentence. For instance, immediately below, circle either “big” or “small”. [12 points]

 It takes ____ big / small ____ changes in R_0 to give small changes in r_E, especially when R_0 is fairly large. When R_0 is fairly small (< 15), r_E is ____ sensitive / insensitive ____ to small changes in R_0.

 Decreasing the latent period ____ increases / decreases ____ r_E (at a fixed R_0). Decreasing the latent period (e.g., from 20 to 10 days) changes r_E ____ less/more ____ when $R_0 = 20$ than when $R_0 = 200$. At large R_0, r_E is determined mostly by ____ infectious / latent ____ period. Values of R_0 above 300 are ____ rare / common ____.
5. (a) What is the velocity of isopath movement (\(\partial s/\partial t\)) and how is it used? (b) Two popular and useful models for describing spatio-temporal dynamics of disease are the logistic-logistic and the logistic-power-logistic. How do these two models differ in terms of \(\partial s/\partial t\)? Explain why these two models give different behaviors for \(\partial s/\partial t\). (c) What does a graph of \(s\) (or \(s'\)) versus \(t\) look like for these two models? [14 points]

6. Draw a typical graph for progress of a polycyclic disease over time (for a situation with the basic reproduction number equal to about 5), showing \(H, L, I,\) and \(R\) versus \(t\). Also put \(Y\) on the same graph. Make sure you label all the curves and the axes. (At \(t = 0\), assume that \(I = 1, L = 0, R = 0,\) and \(H = 999\)). Start the graph at \(t = 0\), and continue the graph until there is no further increase in \(Y\). [12 points]
7. *BONUS (extra-credit)*: An investigator observed disease incidence in \(N = 100 \) sampling units, with \(n = 10 \) leaves per sampling unit. She calculated a variance of the proportions of \(s_y^2 = 0.075 \) (the “observed variance”), and a mean of \(\bar{y} = 0.5 \). What is the index of dispersion (\(D \)), and how do you interpret the magnitude of the value for this data set (in terms of spatial pattern)? [+4 points]
For background information (or if needed)…