Challenges in On-farm Drying and Storage of Soybean for Seed in Modern Bin Systems

Griffiths G. Atungulu
University of Arkansas Division of Agriculture
Introduction

- Commercial practice allows seed to dry in field to 13% MC (w.b).
- Seed subjected to fluctuating levels of moisture deteriorate fast
- Fungi present on stored seed are a major cause of quality losses
Modern In-bin Drying and Storage System and Features

Sensor node on cable

Communication System
- Monitors
 - Temperature Sensing
 - Moisture Sensing
 - Insect Detection
 - Headspace RH/T
 - Pressure
- Communicates to the PC by wired and/or wireless connection
- High limit, rate-of-rise and system status alarms
 - On-screen
 - On-site (audible or visual)
 - Text messaging
 - E-mail
- Interface
 - On-site
 - By internet

Weather Station

Fan Control System

<table>
<thead>
<tr>
<th>Bin Diameter</th>
<th><24'</th>
<th>24'</th>
<th>36'</th>
<th>42'</th>
<th>48'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage with OPI recommended cables</td>
<td>90%</td>
<td>99%</td>
<td>80%</td>
<td>86%</td>
<td>88%</td>
</tr>
<tr>
<td>Coverage with One center cable only</td>
<td>90%</td>
<td>69%</td>
<td>31%</td>
<td>23%</td>
<td>17%</td>
</tr>
</tbody>
</table>
User-friendly interface
EMC Prediction challenges

Desorption/rehydration

Desorption/drying
Common EMC Isotherm Prediction Models

<table>
<thead>
<tr>
<th>Name of model</th>
<th>Equilibrium moisture content model</th>
<th>Water activity / ERH model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modified Henderson</td>
<td>[MC \approx \left(\frac{-\ln(1-a_w)}{A(T+B)}\right)^{1/c}]</td>
<td>[a_w \approx 1 - \exp[-A(T + B)M^C]]</td>
</tr>
<tr>
<td>Modified Chung-Pfost</td>
<td>[MC \approx \frac{-1}{c} \ln \left[-\frac{(T+B)}{A} \ln(a_w) \right]]</td>
<td>[a_w \approx \exp\left[\frac{-A}{(T+B)} \exp(-CM)\right]]</td>
</tr>
<tr>
<td>Modified Halsey</td>
<td>[MC \approx \left[\frac{-\ln(a_w)}{\exp(A+BT)} \right]^{-1/c}]</td>
<td>[a_w \approx \exp[-\exp(A + BT)M^{-C}]]</td>
</tr>
<tr>
<td>Modified Oswin</td>
<td>[MC \approx (A + BT)\left[\frac{a_w}{1-a_w} \right]^{1/c}]</td>
<td>[a_w \approx \frac{1}{\left[\frac{(A+BT)}{M} \right]^C + 1}]</td>
</tr>
<tr>
<td>Modified GAB</td>
<td>[MC \approx \frac{AB \left(\frac{C}{T} \right)^C a_w}{(1-Ba_w+\left(\frac{C}{T} \right)Ba_w)(1-Ba_w)}]</td>
<td>[a_w \approx \frac{2+C(A-1)[\left(\frac{2+C(A-1)}{T(M-1)} \right)^2 - 4(1-\frac{C}{T})^{1/2}}{2B(1-\frac{C}{T})}]</td>
</tr>
</tbody>
</table>
Bottom-line

• **Effective fan control requires accurate EMC isotherms**

• **Rate at which the drying front moves and other characteristics including hydration and dehydrations will impact seed germination and vigor**
“.... to fine-tune EMC prediction models for accurate fan control during natural air in-bin drying and storage;

.........to maintain soybean seed quality, specifically seed germination rate and vigor”.

Research Objective
Conventional cultivars
Functional soybeans
Growing locality

Temperature
35°C
25°C
15°C etc.

Desorption
90%
70%
50%
30%
10%

Adsorption
10%
30%
50%
70%
90%

Relative Humidity

EMC isotherm Determination

VSA - New and rapid method for accurate grain EMC determination
Drying and Simulations

Finite Difference Model (FDM)

Program User Interface
FDM User interface
FDM User interface
Simulation Scheme for NA Drying and Storage

<table>
<thead>
<tr>
<th>Simulation year</th>
<th>Location</th>
<th>Strategy</th>
<th>Air flowrate (m³/min·t⁻¹)</th>
<th>Initial moisture content (%w.b.)</th>
<th>Drying-start date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995 to 2014</td>
<td>Stuttgart, AR</td>
<td>EMC-controlled NA</td>
<td>1.04 (1 cfm bu⁻¹)</td>
<td>16</td>
<td>8/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.08 (2 cfm bu⁻¹)</td>
<td></td>
<td>9/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.12 (3 cfm bu⁻¹)</td>
<td></td>
<td>10/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.16 (4 cfm bu⁻¹)</td>
<td></td>
<td>11/15</td>
</tr>
</tbody>
</table>
Simulation Termination Conditions

- Target MC: 13% w.b.

- Ending condition:
 - 90 day from drying start date Or
 - The top layer <14% w.b.

- Control strategy:
 - MC lower limit base (function of target bin MC)
 - Dynamic MC_LowLimit
 - Dynamic MC window: \((\text{Average bin MC} - \text{Target bin})/2\)
RESULTS
Stuttgart AR (EMC- Controlled NA Drying of Soybean, Harvest MC =16%)

Air Flowrate, m³-min⁻¹ (cfm bu⁻¹)

<table>
<thead>
<tr>
<th>Air Flowrate</th>
<th>Drying Duration (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.04 (1)</td>
<td></td>
</tr>
<tr>
<td>2.08 (2)</td>
<td></td>
</tr>
<tr>
<td>3.12 (3)</td>
<td></td>
</tr>
<tr>
<td>4.16 (4)</td>
<td></td>
</tr>
</tbody>
</table>

Drying-start Date
- **Aug-15**
- **Sept-15**
- **Oct-15**
- **Nov-15**
Stuttgart AR (EMC- Controlled NA Drying of Soybean, Harvest MC = 16%)

<table>
<thead>
<tr>
<th>Air Flowrate, m³-min·t⁻¹ (cfm bu⁻¹)</th>
<th>1.04 (1)</th>
<th>2.08 (2)</th>
<th>3.12 (3)</th>
<th>4.16 (4)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Average Final Moisture Content (%w.b.)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14.0</td>
<td>13.0</td>
<td>12.0</td>
<td>11.0</td>
</tr>
</tbody>
</table>

Location
- Stuttgart_AR

Drying-start Date
- Aug-15
- Sept-15
- Oct-15
- Nov-15
Stuttgart AR (EMC- Controlled NA Drying of Soybean, Harvest MC =16%)

<table>
<thead>
<tr>
<th>Air Flowrate, m³-min⁻¹ (cfm bu⁻¹)</th>
<th>1.04 (1)</th>
<th>2.08 (2)</th>
<th>3.12 (3)</th>
<th>4.16 (4)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Drying cost (c/bu)</th>
<th>Stuttgart_AR</th>
<th>Stuttgart_AR</th>
<th>Stuttgart_AR</th>
<th>Stuttgart_AR</th>
</tr>
</thead>
</table>

Drying-start Date:
- Aug-15
- Sept-15
- Oct-15
- Nov-15
Germination and Vigor Determination - ISTA standards

Parameter Generation & Control unit for temperature and relative humidity control

Electrical Conductivity determination
Mean Germination % vs. Storage Duration (IMC = 16%; 30 °C)

Soybean MC = 16%; 2015 crop year
Growing location – Fayetteville AR

Soybean Cultivars

- B96
- R08
- R09

Equations:

Y (B96) = 101.7 - 0.9223*X
RMSE (B96): 3.68
R² (B96): 0.97

Y (R08) = 100.9 - 0.8603*X
RMSE (R08): 3.38
R² (R08): 0.97

Y (R09) = 97.51 - 0.7366*X
RMSE (R09): 3.85
R² (R09): 0.94
Mean Electrical Conductivity % vs. Storage Duration

Soybean MC = 16%; 2015 crop year
Growing location – Fayetteville AR

Soybean Cultivars

Electrical Conductivity

Storage Duration (days)
Concluding remarks

• Drying start date may significantly affect effectiveness of EMC-controlled drying of soybeans for seed
 – *Example (Stuttgart AR): at lower air flow rates the variation in drying duration is more pronounced with respect to drying-start date*

• Generally, drying cost lowest at lower air flow rates but the associated long drying durations may jeopardize seed germination rate
 – *Do not compromise cost for seed germination rate*
Concluding remarks

• Late harvesting in fall (Nov. 15 for Stuttgart AR location) resulted in minimum percent over drying of the soybeans

• Steady reduction of seed germination potential (%) resulted when the seed remained at elevated MC for prolonged duration
 – About 10 percentage points reduction in germination potential (%) resulted for seeds kept at 16% MC for 10 days; large increase of seed EC reflecting loss of seed integrity was also noted
Acknowledgments

- Arkansas Soybean Research and Promotion Board
- University of Arkansas Division of Agriculture
- University of Arkansas Grain Processing Programs
- Dr. Sammy Sadaka of UofA
- Numerous soybean producers across AR
Thanks