Evaluating Sealing Quality of Grain Storage Bins Combined with Appropriate Phosphine Application Strategy to Minimize Insect Resistance in U.S.

Anderson Research Grant
Taylor Conley, Master’s Student at Oklahoma State
March 1, 2017

Others Involved:
Carol Jones – Oklahoma State University
Mark Casada – USDA-ARS, CGAHR
Rumela Bhadra – Kansas State University
Frank Arthur – USDA-ARS, CGAHR
Ronaldo Maghirang – Kansas State University
Brian Adam – Oklahoma State University
Dirk Maier – Iowa State University
Samuel Cook – Kansas
Problem Identification

- Phosphine is a well-known and widely used fumigant
- Resistance in storage insects developing
- Ineffective fumigations are a main cause of insect resistance
 - Inadequate grain bin sealing
 - Not all life stages of insects exterminated
 - *Rhyzopertha dominica*, or Lesser Grain Borer primary resistant insect
- Insufficient fumigations lead to unnecessary grain losses
 - Improper sealing is main cause of inadequate fumigations
Influences on Bin Leakage

- Environmental factors
 - Wind velocity and direction
 - Presence of other structures
 - Ambient and internal temperatures
 - Moisture content of air
- Insufficient sealing
Steps Taken to Improve Fumigation

• General improved sealing of bin
• Closed Loop Fumigation (CLF) utilizes airflow to evenly distribute fumigant
• Draws air from headspace and injects it at bottom of bin
• If bin is sealed, CLF reduces leakage by reducing pressure differentials
Proposed Solutions

• **Objective:** Develop and deploy leakage testing methods in order to determine sealing and phosphine dosage required for effective fumigations.
• Develop standard constant pressure test procedures
• Quantify total leakage for storage bin
• Allows for determination of initial dose of phosphine for a successful fumigation
• Used to determine required application rates to maintain target fumigation concentration
• Accurate use of phosphine minimize rate of insect resistance development
Pressurization Tests

• Quantification of bin leakage allows better control of fumigation process

• Pressure Decay Test:
 • Structure pressurized
 • Pressure monitored as it falls
 • Time for pressure to reach half its initial amount = $P_{1/2}$

• Constant Pressure Test:
 • Constant pressure maintained in structure via fan
 • Airflow rate required to maintain pressure monitored
 • Higher airflow = more pressure loss = leakier structure
 • Determined more appropriate testing method for temporarily sealed/unsealed grain bins
Defining Sealing Standards for Methods

• Bins pressure-tested with at least two of the three levels of sealing
• Unsealed = normal storage method of U.S. grain bins
 • No sealing on bin performed
• Temporarily sealed
 • Sealing vents, hatches, aeration fan intakes, downspouts, and conveyor fill points with tape and plastic
• Completely sealed
 • Best sealing techniques
 • Modified bin design
Methods: Pressure Decay Tests

- Pressure decay tests performed on completely and temporarily sealed bins
- $P_{1/2} \geq 5$ min when initial pressure is 500 Pa
- Small-scale steel bins $P_{1/2} \geq 3$ minutes
- Empty – partially loaded $P_{1/2} < 3$ minutes
- If not met, bin not completely sealed
Methods: Constant Pressure Test

- Constant pressure tests performed on completely and temporarily sealed bins
- Variable speed blower attached to opening
- Volumetric flow rates of air up to 500 Pa
- Constant pressure test and pressure decay test results compared to determine best pressure testing method for bin type
Expected Results

• Completely sealed bin able to hold up to 50% of initial pressure for no less than five minutes
• Only completely-sealed/well-sealed bins successfully tested with pressure decay test
• Temporarily-sealed bins not expected to produce meaningful results from a pressure decay test
Initial Test: Methods

- Weather conditions affect pressure loss
- Test temperature, relative humidity (RH), solar radiation, and wind speed
- 500 bu full canola bin set up to perform pressure test
- Tested at different times of day
- Conditions recorded with anemometer (wind speed) and Onset HOBO sensor devices
Initial Test: Methods (cont.)

• Bin “temporarily” sealed
• Plastic sheets taped around entrance, ventilation fan, and outlet with extra strong duct tape
• Three coats of elastomeric paint applied at base of bin
Initial Test: Methods (cont.)

• 1-1/2 in hole drilled in top of bin – PVC pipe attached in hole
• PVC extension created to attach shop vacuum
• Shop vacuum pressurizes bin
• Both pressure decay and constant pressure tests to be performed
Preliminary Testing

• After temporarily sealing with plastic and tape, preliminary pressure decay test ran
• U – tube manometer connected to bin valve
• Avg. of only 5 second half-life – nowhere near the expected amount!
• Three coats of elastomeric paint applied after test
• Constant pressure tests?
Expected Results (cont.)

• Higher wind speed results in faster rate of pressure loss

• More sun radiation = more light intensity; creates higher temperatures in bin than in atmosphere
 • Larger gradient between temperatures causes more leakage from bin

• Higher temperatures also increase pressure loss of bin
Conclusions

- Pressure testing provides quantitative measure of expected leakage
- Predict amount of phosphine required for fumigation
 - Exterminate all stages of insects → reduce phosphine resistance
- Deliverables:
 - Straightforward pressure test protocol to relate to phosphine leakage levels
 - Potential for standard pressurization fan
Questions?

Thank you for your time!