Modeling time, aeration, and loading cycle effects on grain packing

Presenter
Mark Casada

Funded research made possible by
The Andersons Grant Funding Program Team Team Competition 2014

Research Team
Sid Thompson - University of Georgia
Mike Montross, Sam McNeill, Aaron Turner - University of Kentucky
Ronaldo Maghirang, Marvin Petingco, Rumela Bhadra - Kansas State University
R. P. Kingsly Ambrose - Purdue University
Mark Casada - USDA-ARS-CGAHR
Pack Factor

• Adjustment factor to calculate the mass (M) of grain based on measured volume (V):

\[M = D_0 \cdot P \cdot V \]

where, \(D_0 \) = initial density (test weight)
\(P \) = average grain packing

note: \(D_0 \cdot P = R \) = pack factor

• Accounts for compaction from overbearing weight of grain above

• Important for accurate grain inventory, government auditing, insurance purposes
Overall Packing Effects

Corn

Wheat

Overall Project Rationale

Very limited information available on the effect of these frequent issues:

- Storage time and aeration
- Partial unloading/loading cycles
- Side discharge
- Large piles
- Secondary grain quality parameters:
 - high dockage
 - high BCFM
 - damage
 - GMO varieties
Project Objectives

• Determine the effect of storage time, up to 12 months, with and without aeration on pack factors of wheat, corn, and barley.

• Determine the effect of bin loading and unloading procedures on packing (partial unloading and refilling and side discharge) using field- and laboratory-scale bins.

• Evaluate the effects of secondary crop quality parameters (high dockage for wheat, high BCFM for corn, and GMO vs. non-GMO varieties) on grain packing by characterizing fundamental compressibility relationship.
Approach

- Laboratory measurements of fundamental compressibility relationships.
- Detailed pilot-scale measurements in laboratory.
- Full-scale measurements for validation.
- Refine the science-based model with the new information.
Aeration Effects – Laboratory Study

• Examined how aeration and moisture shrink effect volume
• Three treatments
 • Wet grain with aeration
 • Grain at equilibrium with aeration
 • Grain at equilibrium w/o aeration
• Two crops
 • Corn
 • Soybeans
Aeration Test Conditions

• 6” diameter PVC pipes with H/D=1
• Airflow
 • Exit velocity ~ 44.6 ft./min
 • ~111 cfm/bu
• Corn
 • 20°C / 50% RH (EMC 11.9%wb)
• Soybeans
 • 15.5°C / 55% RH (EMC 9.1% wb)
Wet samples dried from 15.7% to 12.2%
Soybean Aeration

Wet samples dried from 13.3% to 10.6%
• Early field results for corn, soybeans, sorghum, and HRW Wheat
HRW wheat stored for about 20 days with 155.5 hours of aeration
Corn corrugated steel bins with diameter of 7.3 m and eave height of 6.4 m stored for 6 months with 852 hours of aeration.
Decrease in grain height from 0.25% to 1.42% after 6 months, non-aerated bins.
Observations - Time & Aeration Field Data

Corn: With aeration, grain height decreased by 0.06% to 0.5% after 5 months of storage.

Soybeans: With aeration, grain height decreased by 0.06% to 0.21% after 5 months of storage.

Sorghum: Without aeration, grain height decreased by 0.04% to 0.08% after 5 months of storage.

HRW Wheat: Without aeration, no decrease in grain height for storage up to 4 months.
Partial Unloading – Field Data

• Ethanol Plant, St. Louis, MO
• Steel corrugated flat bottom bin, 80 ft dia., 63 ft eave height
• Measured packing:
 5.32% & 5.34%
• Model calculated:
 4.9% and 5.0%
Damage, GMO, & Compressibility

- Factors that could influence the behavior of grain in compression were examined utilizing confined uniaxial compression tests.
- Factors examined were:
 - Mold damaged corn
 - Insect damaged corn
 - Soybeans with GMO traits
Compressibility Test Set Up
Mold Damage

• Pioneer 33d49 from KS
• Test weight
 • Before- 723 kg/m³
 • After- 699 kg/m³
• MC
 • Before-9.6%
 • After-10.3%
• 41% mold damaged
• 6.5% broken
• 1.4% insect damaged
Mold Damage - Compressibility Results

![Graph showing density vs. overburden pressure for mold damaged and original samples.](image-url)
Insect Damage

- Croplan 5757 VT3 from KS
- Test weight
 - Before-795 kg/m³
 - After-723 kg/m³
- MC
 - Before-11.2%
 - After-10.8%
- 17.8% ± 4% Insect damage
Insect Damage - Compressibility Results

![Graphs showing the effect of overburden pressure on density and density increase for insect damage compared to original samples.]
Soybeans

- Two comparisons
 - KS3406RR GMO 2015 OT vs KS4313N Non GMO 2015 OT
 - KS c. A GMO 2015 OT vs KS c. A Non GMO 2015 OT
- Nominal MC’s - 10% and 14% wb
- Less than 3 kg/m³ difference in test weight between GMO and Non GMO samples

<table>
<thead>
<tr>
<th></th>
<th>Comparison 1</th>
<th></th>
<th></th>
<th>Comparison 2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TW (kg/m³)</td>
<td>s.d.</td>
<td>MC (%)</td>
<td>s.d.</td>
<td>TW (kg/m³)</td>
<td>s.d.</td>
</tr>
<tr>
<td>GMO</td>
<td>695</td>
<td>7.8</td>
<td>13.8</td>
<td>0.21</td>
<td>687</td>
<td>2.3</td>
</tr>
<tr>
<td>NON</td>
<td>692</td>
<td>5.9</td>
<td>14.2</td>
<td>0.15</td>
<td>687</td>
<td>6.2</td>
</tr>
<tr>
<td>GMO</td>
<td>714</td>
<td>3.6</td>
<td>9.8</td>
<td>0.31</td>
<td>704</td>
<td>2.6</td>
</tr>
<tr>
<td>NON</td>
<td>716</td>
<td>4.3</td>
<td>9.6</td>
<td>0.04</td>
<td>706</td>
<td>4.2</td>
</tr>
</tbody>
</table>
Comparison 1
Comparison 2
Thank You !
Acknowledgements

• USDA and Kansas Ag Experiment Station
• Dennis Tilley, Kevin Hamm, and Howell Gonzales
• Farm Service Agency, Wheat Commission, Farmers, and all the Elevator Cooperators
Thompson et al. (1987)

- Crop varieties effect (under equal levels of overburden pressure):
 - SRW wheat and rough rice underwent large amounts of packing than Corn

- Variation in the values of μ (friction coef.) has greater effect on the packing factor than k (lateral to vertical pressure) (\sim double)

Thompson et al. (1991)

- Doubling the grain height
 - Avg. increase in packing factor of 1.2% for wheat

- Doubling the grain diameter
 - Avg. increase in packing factor of 0.23% for wheat

- Increase in moisture content from 10% to 16% db (material became more compressible, increase in packing)
 - Avg. increase in packing factor of \sim0.4 to 0.90% for wheat
<table>
<thead>
<tr>
<th>Location</th>
<th>Crop</th>
<th>Diameter (m)</th>
<th>Eave Height (m)</th>
<th>Moisture Content (% wb)</th>
<th>Test Weight (kg/m³)</th>
<th>AoR (*)</th>
<th>Time of Storage (month)*</th>
<th>Grain Height (ft)</th>
<th>Decrease in Grain Height (%)</th>
<th>Aeration</th>
<th>WPACKING Packing (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Troy, KS</td>
<td>Corn</td>
<td>7.32</td>
<td>6.41</td>
<td>15.6</td>
<td>764.6</td>
<td>23.57</td>
<td>2</td>
<td>18.04</td>
<td>0.11%</td>
<td>Yes for 850-900 hrs</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23.70</td>
<td>5</td>
<td>18.02</td>
<td>0.50%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23.59</td>
<td>6</td>
<td>17.95</td>
<td>0.50%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Troy, KS</td>
<td>Corn</td>
<td>7.32</td>
<td>6.41</td>
<td>15.3</td>
<td>773.6</td>
<td>26.00</td>
<td>1</td>
<td>13.14</td>
<td>0.08%</td>
<td>Yes for 850-900 hrs</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25.56</td>
<td>5</td>
<td>13.13</td>
<td>0.15%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25.71</td>
<td>6</td>
<td>13.12</td>
<td>0.08%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22.80</td>
<td>1</td>
<td>16.52</td>
<td>0.06%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22.61</td>
<td>5</td>
<td>16.51</td>
<td>0.06%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22.54</td>
<td>6</td>
<td>16.51</td>
<td>0.06%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilsey, KS</td>
<td>Corn</td>
<td>12.56</td>
<td>9.98</td>
<td>15.0</td>
<td>773.6</td>
<td>21.92</td>
<td>1</td>
<td>16.31</td>
<td>0.06%</td>
<td>Yes for 1000 hrs</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21.42</td>
<td>5</td>
<td>16.30</td>
<td>0.06%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21.95</td>
<td>6</td>
<td>16.30</td>
<td>0.06%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.38</td>
<td>1</td>
<td>19.72</td>
<td>0.06%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.47</td>
<td>5</td>
<td>19.70</td>
<td>0.10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.46</td>
<td>6</td>
<td>19.70</td>
<td>0.10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay Center, KS</td>
<td>Corn</td>
<td>9.14</td>
<td>7.32</td>
<td>14.5</td>
<td>759.4</td>
<td>23.35</td>
<td>1</td>
<td>21.05</td>
<td>0.00%</td>
<td>Yes for 1000 hrs</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23.40</td>
<td>5</td>
<td>21.05</td>
<td>0.00%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23.38</td>
<td>6</td>
<td>21.05</td>
<td>0.00%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Troy, KS</td>
<td>Soybean</td>
<td>9.14</td>
<td>7.48</td>
<td>9.2</td>
<td>740.1</td>
<td>24.52</td>
<td>1</td>
<td>16.52</td>
<td>0.06%</td>
<td>Yes for 850-900 hrs</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24.27</td>
<td>5</td>
<td>16.51</td>
<td>0.06%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24.00</td>
<td>6</td>
<td>16.51</td>
<td>0.06%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilsey, KS</td>
<td>Soybean</td>
<td>10.97</td>
<td>6.60</td>
<td>9.5</td>
<td>727.3</td>
<td>26.16</td>
<td>1</td>
<td>16.31</td>
<td>0.06%</td>
<td>Yes for 1000 hrs</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26.59</td>
<td>5</td>
<td>16.30</td>
<td>0.06%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26.53</td>
<td>6</td>
<td>16.30</td>
<td>0.06%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilsey, KS</td>
<td>Soybean</td>
<td>10.97</td>
<td>6.60</td>
<td>9.6</td>
<td>735.0</td>
<td>24.14</td>
<td>1</td>
<td>19.72</td>
<td>0.10%</td>
<td>Yes for 1000 hrs</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24.15</td>
<td>5</td>
<td>19.70</td>
<td>0.10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24.96</td>
<td>6</td>
<td>19.70</td>
<td>0.10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay Center, KS</td>
<td>Soybean</td>
<td>7.32</td>
<td>6.63</td>
<td>10.2</td>
<td>751.7</td>
<td>25.04</td>
<td>1</td>
<td>13.47</td>
<td>0.07%</td>
<td>Yes for around 900 hrs</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25.02</td>
<td>5</td>
<td>13.46</td>
<td>0.15%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25.06</td>
<td>6</td>
<td>13.45</td>
<td>0.15%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay Center, KS</td>
<td>Soybean</td>
<td>7.32</td>
<td>6.63</td>
<td>9.8</td>
<td>745.3</td>
<td>24.41</td>
<td>1</td>
<td>19.02</td>
<td>0.15%</td>
<td>Yes for around 900 hrs</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24.58</td>
<td>5</td>
<td>18.98</td>
<td>0.21%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24.57</td>
<td>6</td>
<td>18.98</td>
<td>0.21%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gettysburg, SD</td>
<td>HRW Wheat</td>
<td>6.37</td>
<td>6.71</td>
<td>11.0</td>
<td>767.2</td>
<td>20.42</td>
<td>1</td>
<td>18.78</td>
<td>0.00%</td>
<td>No</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.42</td>
<td>4</td>
<td>18.78</td>
<td>0.00%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gettysburg, SD</td>
<td>HRW Wheat</td>
<td>6.37</td>
<td>6.71</td>
<td>11.5</td>
<td>771.0</td>
<td>20.12</td>
<td>1</td>
<td>18.95</td>
<td>0.00%</td>
<td>No</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.12</td>
<td>4</td>
<td>18.95</td>
<td>0.00%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gettysburg, SD</td>
<td>HRW Wheat</td>
<td>6.37</td>
<td>6.71</td>
<td>11.6</td>
<td>773.6</td>
<td>20.05</td>
<td>1</td>
<td>20.35</td>
<td>0.00%</td>
<td>No</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.05</td>
<td>4</td>
<td>20.35</td>
<td>0.00%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riley, KS</td>
<td>Sorghum</td>
<td>12.62</td>
<td>9.98</td>
<td>12.3</td>
<td>747.9</td>
<td>23.97</td>
<td>1</td>
<td>26.75</td>
<td>0.04%</td>
<td>No</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24.09</td>
<td>5</td>
<td>26.74</td>
<td>0.04%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24.04</td>
<td>6</td>
<td>26.74</td>
<td>0.04%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riley, KS</td>
<td>Sorghum</td>
<td>12.62</td>
<td>9.98</td>
<td>12.0</td>
<td>753.0</td>
<td>22.55</td>
<td>1</td>
<td>26.58</td>
<td>0.08%</td>
<td>No</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22.59</td>
<td>5</td>
<td>26.56</td>
<td>0.08%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22.89</td>
<td>6</td>
<td>26.56</td>
<td>0.08%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* All are steel corrugated bins; maximum storage period up to 6 months
Laboratory Compressibility Tester
HRW wheat corrugated steel bins with diameter of 5.6 m and eave height of 4.0 m stored for about 20 days with 155.5 hours of aeration.
Corn corrugated steel bins with diameter of 7.3 m and eave height of 6.4 m stored for 6 months with 852 hours of aeration.

Barley corrugated steel bins with diameter of 27 m and eave height of 20 m stored for up to a year (non-aerated).

Decrease in grain height by 0.25% to 1.42% was seen between 5 to 7 months of storage.