Development of an inexpensive sensor for the detection of mold in stored canola seed

Kevin Moore
Biosystems and Agricultural Engineering
Oklahoma State University

Mold in stored grain

- Mold is a primary cause of quality loss in stored grain
- Once fungi are visible there may already be extensive damage
- Mold in corn and other grains can form aflatoxin
 - Carcinogenic to humans
 - Livestock death and disease
 - Considerable research has focused on aflatoxin detection
- Primary concern for mold in stored canola is quality loss
 - Heat damage
 - Extra processing required to deodorize
 - Mites and other insects feed on mold
- Most common storage fungi for canola
 - Aspergillus glaucus
 - Aspergillus candidus
 - Penicillium spp.
 - Eurotium spp.
Methods of mold detection

- Temperature monitoring
 - Hot spots due to mold growth
 - Must be located near temperature cables
- Periodic sampling
 - Visual inspection
 - Detectable odor
 - Possible health impact
 - Subjective test
- Damage is already present when discovered

Canola quality monitoring

- Can a low-cost sensor be developed to detect mold in stored canola seed?
Electronic nose

- Well-established technology, initially developed in the 1960’s
 - Numerous technological approaches
 - Commercial devices available for purchase
- First commercial application was the Taguchi Gas Sensor in 1972
 - Metal Oxide Semiconductor (MOS)
 - Early applications in fire and carbon monoxide detectors
 - Led to formation of Figaro Engineering
 - Manufactures and sells individual sensors
 - Provides an inexpensive option for eNose development

Metal oxide semiconductors (MOS)

- When MOS is exposed to the air, free electrons at the surface bind to oxygen
 - Resistance of MOS is increased
- When a reducing gas is introduced it removes oxygen molecules from surface and frees electrons
 - Resistance of MOS is reduced
- Change in resistance can be used to detect certain gases

System development - summary

- Development of sensor array
 - Sensor selection and construction
 - Odor sampling system
- Evaluation against known mold concentrations
 - Mycological isolation and growth of a single mold species
 - Identification via PCR and DNA sequencing
 - Preparation of mold spore standard solution
 - Known concentration of mold spores per volume
 - Inoculate “clean” canola seed with known concentration of mold
 - Incubation of samples for 0, 7, 14 days
 - Control with “clean” canola seed and inoculated glass beads
 - Measure response of electronic nose to samples
- Evaluation of sensor performance
 - Multivariate statistical techniques

Sensor array

- Figaro MOS sensors
- Honeywell HIH-4030 humidity sensor
- Analog Devices TMP-36 temperature sensor
Metal oxide semiconductors (MOS)

- Figaro gas sensors – low cost and commercially available
 - Selected to provide a response from a broad range of gases
 - Metal oxide semiconductor
 - TGS 813 – sensitive to combustible gases
 - TGS 822 – sensitive to organic solvent vapors
 - TGS 2602 – sensitive to VOCs and odorous gases
 - TGS 2620 – sensitive to alcohol and organic solvent vapors

Odor sampling system

- Laboratory air supply with flow regulator
- Gas drier / activated carbon pre-filter
- Sample container
- Sensor array
- Chemically stable, low-odor materials
 - Glass sampling jars with Teflon lid liners
 - Teflon tubing and PVDF fittings
Mold isolation/purification

Evaluation of mold by PCR

- Polymerase Chain Reaction (PCR)
 - Amplifies the DNA of a target DNA sequence
 - Amount of DNA present doubles after each cycle
Mold spore standard solution

- Aspergillus chevalier
 - Member of the A. glaucus family
 - Isolated from Croplan 115W canola seed
- Physical removal of mold spores from agar plate and suspension in reagent grade water
- Determination of concentration by counting with hemocytometer

Inoculation of seeds
Statistical analysis

- Multivariate analysis of variance (MANOVA)
 - Is there a difference in sensor output for different levels of mold inoculation?
- Discriminant analysis to select classification model
 - Test linear, quadratic, and k-nearest neighbor models
- Forward stepwise selection
 - Determine if the number of sensors in the array can be reduced without sacrificing classification quality
Thank You